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Integrated photonics

Many possible applications:
• Telecommunications
• Datacenter interconnections
• Sensing
• Neural networks
• Quantum computing

Integrated photonicsTraditional optics



F. Zanetto – Transparent detection of light 3/29

A wide spectrum of applications
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Silicon Photonics

• Integrated optical circuits fabricated in a CMOS-compatible Silicon-based process.
• Compatible with optical trasmissions at 1550nm and 1300nm.
• High scalability thanks to excellent confinement properties of Silicon-on-Insulator 

waveguides.
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The need for control electronics                                               (1/2)

Electronic control of photonic circuits is needed to ensure 
stable and reliable operations!

Example: detuning of a ring resonator

• Temperature sensitivity:
Δλ = 800pm
Δf = 100GHz

ΔT = 10K

• Sensitivity to fabrication tolerances:
Δλ = 800pm
Δf = 100GHz

1 nm waveguide 
width mismatch
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The need for control electronics                                               (2/2)

The detectors:
• must measure the working condition of the photonic chip.
• must be compatible with the technology. 
• should introduce as low losses as possible.
• should have a readout time of few milliseconds.
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Integrated light detectors

Germanium photodiode:
• Standard light sensor in Silicon Photonics.
• High sensitivity (0.7 A/W) and high speed (50 GHz).
• It requires to tap a small fraction of light from the 

main path to measure it.

Tapping light is not always possible:
• When the number of detectors increases, the 

power loss becomes unacceptable.
• Each measurement slightly perturbs the optical 

properties of the propagating beams.

“Transparent” light sensors must be developed to overcome these limitations.
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Defect-mediated free carriers generation   

Metal

SiO2

Si
SiO2

Si SiO2

This phenomenon is 
responsible for the intrinsic 
propagation losses of the WG.

Surface-state absorption (SSA)
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ContactLess Integrated Photonic Probe (CLIPP)

GWG = q ⋅ μ ⋅ p ⋅
h ⋅ w

L
• The presence of light increases the 

number of free carriers in the 
waveguide due to defect-mediated 
absorption of photons.

ΔGWG = q ⋅ μ ⋅ Δp ⋅
h ⋅ w

L

• The silicon waveguide behaves as a 
resistor:

Δ𝑝𝑝 ∝ 𝑘𝑘 ⋅ 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜
𝜂𝜂    with 0.5<η<1

F. Morichetti et al., IEEE JSTQE, 20, 4, 292-301 (2022)
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ContactLess Integrated Photonic Probe (CLIPP)

Completely non-invasive 
light monitoring!

F. Morichetti et al., IEEE JSTQE, 20, 4, 292-301 (2022)
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CLIPP electrical model

GWG = q ⋅ p ⋅ μ ⋅ h⋅w
L

= 5 𝑛𝑛𝑛𝑛

CA = 𝜀𝜀0 ⋅ 𝜀𝜀𝑜𝑜𝑜𝑜
𝐿𝐿𝐸𝐸⋅(𝑊𝑊𝑊𝑊𝑊𝑊+2𝑜𝑜𝐶𝐶𝐶𝐶𝐶𝐶)

𝑜𝑜𝐶𝐶𝐶𝐶𝐶𝐶
= 10 𝑓𝑓𝑓𝑓

fp = 1

2 𝜋𝜋 𝑅𝑅𝑊𝑊𝑊𝑊
𝐶𝐶𝐶𝐶
2

= 40 𝑘𝑘𝑘𝑘𝑘𝑘

CE ≈ 50 𝑓𝑓𝑓𝑓 − 500 𝑓𝑓𝑓𝑓 (layout dependent)
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CLIPP electrical model
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Electronic readout

Lock-in detection scheme for admittance readout:
• Stimulus frequency higher than electrical pole
• Capacitive TIA to break bandwidth/noise tradeoff
• Extraction of real and imaginary part to reconstruct complex impedance
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Integrated implementations

• Passive, low-power DC bias
• Prone to output offsets due to DC currents

Guglielmi et al., IEEE JSSC, 55, 8 (2020) Zanetto et al., IEEE SSCL, 3, 246-249 (2020) 

• Active low-frequency auxiliary feedback 
• Area and power consumption
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Scaling down the CLIPP size

A short detector is better than a 
long one:

ΔGWG = Δp ⋅ q ⋅ μ ⋅
h ⋅ w

L

• True only because the detector 
admittance is dominated by CE

• Short detector = lower WG 
resistance

• To keep the same readout 
frequency, increase the access 
capacitance with slabs under 
the electrodes.



F. Zanetto – Transparent detection of light 17/29

~10x 

Experimental validation

Light in Light out

• ~10x conductance variation 
for the same optical signal.

• ~6x smaller sensor footprint.
• Detection of light signals 

down to -50 dBm (10 nW)

V. Grimaldi et al., PRIME conference, 285-288 (2022)
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Experimental validation
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Differential sensor topology

Any commod-mode current is steered 
away from the virtual ground of the TIA.

Main CLIPP problems:
• The coupling between the electrodes 

generates a current much larger than 
the small variations to be measured.

• Sensitivity to temperature variations.
• Crosstalk between CLIPPs on 

different waveguides due to light in 
the oxide and substrate.

Differential topology to solve them all!
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Experimental demonstration

Peltier cell

Photonic 
chip

~8x 



F. Zanetto – Transparent detection of light 21/29

Increasing the detector sensitivity

The CLIPP sensor has good sensitivity but:
• In some applications sensors that can detect even weaker light signals are 

needed.
• The CLIPP performance greatly relies on the use of a very low-noise 

custom front-end electronics.
• The sensor readout is not easy since a multichannel lock-in amplifier 

operating at around 1 MHz is needed.

Other sensor topologies can be studied to improve and simplify light 
detection while keeping the advantages of CLIPPs.
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Waveguide-integrated light sensors

• Photonic technologies allow to dope the 
waveguide core to design opto-electronic 
devices like modulators and attenuators.

• The doping is needed to obtain the desired 
optoelectronic behavior and to access to the 
waveguide electrical properties.

• This additional processing step can be used 
to design WG-integrated sensors.

Low frequency operations and possibly higher 
sensitivity than CLIPPs.

Light is confined in the center; 
the contacts are far away and 
the core is not doped not to 
introduce additional losses.
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Transparent p-i-n photodiode

• The photogenerated (due to SSA) electron-hole pairs are rapidly separated by the 
electric field in the device and collected by the ohmic contacts.

• A current pulse is produced each time an e-h pair is generated and travels through 
the WG. The pulse ends when the carriers reach the contacts.

• The total current in the device is the sum of all the pulses per second, whose 
average number is determined by the photogeneration rate (photocarriers/s) GOPT:

𝐼𝐼𝑃𝑃𝑃𝑃 = 𝑞𝑞 ⋅ 𝐺𝐺𝑂𝑂𝑃𝑃𝑂𝑂

The core is depleted of 
free-carriers due to the 
large electric field in the 
p-i-n structure. 
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Doped photoconductor

• The drift velocity of the generated e-h is defined by their mobility inside the device. It 
is usually very different for e- and h+, especially in thin structures like WGs.

• To keep charge neutrality during the collection of carriers, an e- is injected from C1 
each time another e- reaches C2, until one e- recombines with the h+ (recirculating 
current mechanism). This extends the duration of each current pulse.

• The total current in the device is thus increased compared to the pin diode due to 
pulses accumulation. The amplification factor is called photoresistive gain GPR:

𝐼𝐼𝑃𝑃𝑅𝑅 = 𝑞𝑞 ⋅ 𝐺𝐺𝑂𝑂𝑃𝑃𝑂𝑂 ⋅ 𝐺𝐺𝑃𝑃𝑅𝑅 = 𝐼𝐼PD ⋅ 𝐺𝐺𝑃𝑃𝑅𝑅

The central region is 
now full of free-carriers 
as defined by the 
doping level.
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Photoconductive gain

• If a p-i-n diode and a photoconductor 
have the same geometry, the latter 
generates a much larger photocurrent, 
easier to be detected.

• It can be shown that:

𝐺𝐺𝑃𝑃𝑅𝑅 ∝
𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝜏𝜏𝑂𝑂𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝐿𝐿𝑂𝑂
where τLIFE is the lifetime of the 
photogenerated e-h pair and τTRANSIT is 
the time needed by the fastest of the 
two carriers to go from one contact to 
the other.

GPR
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Low-doped photoconductor
• Transparent photoconductors found in literature 

usually feature a lightly doped WG-core.
• However, it is well known that the lifetime of a 

photogenerated free-carrier in a semiconductor 
is inversely proportional to the doping of the 
material.

A photoconductor where the WG is not doped 
should have higher photoconductive gain!

GPR < 1 !!!
What’s going on here?
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Effect of surface effects on the electrical conduction
• The waveguide has low doping and a very thin structure with a high surface-to-

volume ratio, therefore surface effects have a huge impact on the conduction!
• The same charges, defects and traps responsible for sub-bandgap photogeneration 

also deplete the WG from free-carriers and slow down the motion of the photo-
generated ones, increasing the transit time!
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Charge traps compensation

• The detrimental effects of charges and traps on the conduction can be compensated 
by properly biasing the chip substrate to restore the photoconductive gain!

• The same effect can be obtained by integrating a gate over the WG, to have a more 
localized compensation action.
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Photoconductive gain vs substrate bias voltage 

• By decreasing the substrate bias 
voltage, the effect of charge traps is 
completely compensated.

• A high photoconductive gain is 
observed, since the photogenerated 
carriers now travel at the expected 
velocity in the WG.

• The same behavior is not observed 
in the doped photoconductor, since 
the high number of native free-
carriers makes the effect of charge 
traps negligible.
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Comparison between transparent sensors

• A correct substrate bias allows to 
recover the expected device behavior.

• A photoconductive gain of 106 is 
observed, allowing to detect light 
signals down to -60 dBm.

• As expected, the low-doped 
photoconductor is more sensitive than 
the doped one.

• The measurement is performed at low 
frequency and does not require a 
custom low-noise electronic readout.

A. Perino et al., Optics Letters, 47, 1327-1330 (2022)
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Sensor time response

Why does the photoconductive gain 
reduce at high light intensity?

• At high light power, the number of photogenerated free carriers becomes 
comparable or larger than the native ones due to doping, reducing their lifetime.

• The photoconductive gain increases the detector sensitivity but it limits the 
readout bandwidth!
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Noise behaviour of WG-integrated photoconductors

• The low-doped device has lower 
thermal noise, due to its higher 
resistance (iNOISE = 4kT/R)

• An unexpected bias-dependent 1/f 
noise is observed, with the same 
level in the two devices.

• The higher sensitivity of the low-
doped device is thus only due to its 
higher photoconductive gain.

• A lock-in readout is beneficial to 
improve the readout resolution 
(modulate light, not bias voltage!)
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Conclusions

• Transparent light sensors are an important 
tool in integrated photonics.

• CLIPPs are a good choice in technologies 
that do not offer the possibility of doping 
the waveguide, but they require custom 
readout circuits.

• The photoconductive gain can be exploited 
to increase the sensitivity of WG-integrated 
detectors and simplify the readout scheme, 
at the price of a limited detection bandwidth.
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